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Fig. 6 — This figure illustrates a crilical shorlcoming of constant

threshold processing. The slowly varying maximum centered at /,
presumably has its origin in the non-uniform background scene. The
narrower, lower amplitude spike centered at ¢, is due to a target,
The likelihood of a false alarm {i.e., a clutter-induced threshald cross-
ing) grows rapidly as the threshold level v, is reduced. There is no
way for the constant threshold processor to detect the targel peak al
t, without also incurring a false alarm arising from the clutter peak
centered at 4,.

A plot of the threshold crossing rate ﬁr,(r} corresponding to
this figure would show that the probability of a threshold crossing,
and hence a false alarm, is far greater at time 7, than at any ather
tme,

The large, relatively slowly varying maximum centered at 7, in Fig. 6 is presumed to have
its origin in the background scene. The narrower, lower amplitude spike centered at /, in Fig. 6
is presumed (o be due to a "target.”

It follows from Eqs. (13) and (9) that the likelihood of a clutter-induced threshold cross-
ing grows rapidly as the threshold level y, in Fig. 6 is lowered. A clutter-induced threshold
crossing (i.e., a "false alarm") becomes a virtual certainty® when there is a "mean-crossing,” i.e.,
when the threshold level actually intercepts the mean current mp(¢). [17,18] There is
apparently no way for the constant threshold processor to detect the target peak at ¢, without
also incurring a false alarm arising from the clutter peak centered at ¢, '

Crossing Rates for Constant False Alarm Rate (CFAR) Adaptive Threshold Detection
The performance of an adaptive-threshold processor is illustrated with the aid of Fig. 7.
The processor is presumed to have some means for deriving high-confidence estimates for

niy(r) and o (r), defined as /# and & v, respectively. When m (/) is "slowly-varying® the pro-
cessor establishes y,(r) as:

v, () =my () + K& (1), (14)

"This has been established by inlegrating the crossing rate function -'.”J over an interval of lime containing a time point
I Tor which: my(i, b = v, An asymplotic analysis {cf. Relt 17) has shown that the crossing rale integrat Eq. (12) is
incremented by unity for cach such time 4, contained in the interval ol integration 7, This result is not at all surpris-
ing, and may be taken as gvidence that the theory developed here is consistent with common sense.
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The kind of processor just described has been called a constant false alarm rate (CFAR)
processor, since the threshold crossing rate is now independent of time, i.e., a crossing is no
more likely to occur when scanning a region of non-uniform background than when scanning a
region of uniform background. For example, with reference to Fig. 7, the crossing rate is now
no greater at s, than at any other time.

Unfortunately, the CFAR processor is generally a non-realizable ideal: it has been
assumed that the processor is able to estimate the quantities m,{¢) and o y(¢) to as high a pre-
cision as desired. Errors in the estimated values for my and oy are usually unavmdable, giving
rise to appreciable time-dependence in Eq. (15) for u (1).

ANALYSIS
Introduction

The objective of the next subsection is to present an expression for the expected value of
the number of times a nonstationary noise Y(r) crosses a nonstationary stochastic threshold
Y, ().

The crossing-rate formulation that results, Egs. (25) and (27), requires knowledge of the
joint density function Sriv, v, of the current Y (r), its time derivative Y(¢), the threshold ¥,(¢),

and its time derivative ¥,(r).

As discussed in Ref. 17, the currents Y(r) and Y,(¢) are non- statlonary Gauss1an
processes. It follows that Y(¢), Y(¢), ¥,(s), and Y,(t), are jointly Gaussian processes. The
joint density f yiy,y, can thus be expressed in terms of a covariance matrix A .

Assuming that the filtered current Y(¢) and the threshold Y,(z) are uncorrelated
processes, the fourth-order density function factorizes into

Tyiv, v, = Syi Ty, v, Qo

The justification for Eq. (20) is discussed in the next section. Expression (52} for the jointly
Gaussian f,; is then used with the general crossing rate Expression (48) to derive a more
explicit crossing rate expression, Eq. (55). Evaluation of Eq. (55) for 1, requires the expres-
sions derived in Appendix B for the time-varying current statistics o (1), o (t), and r(z) (cf.
Eqs. (B-30) - (B-34)).

The complete expression for the average crossing rate, Eq. (47), generally requires the
numerical integration of a somewhat complicated integrand. The section called Crossing Rates
for Adaptive Threshold Processors is devoted to deriving an approximation to Eq. {47). The
result, Eq. (67), is the principal analytical result of this report.

A Basic Equation for Curve Crossing Rates

The integer random variable J is defined as the number of zero-crossings of a random

process G(r) on a time interval |¢| < T/2. The expected value of J is defined as m, (0, T).
Thus,

my (0, T) = E{J}, n
13
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where E{.}] denotes an ensemble average. Defining the crossing rate function () as in Eq.
(12}, it can be shown that {cf. Ref. 26, p. 514)

miry = [lélgs 0.8 de. (22)

The function fg: in Eq. {22} is the joint probability density function of the process G {r} and
its time derivative G (7).

Equation (22} is well known; however, most references to it appear to impose a stationar-
ity requirement on G that is not actually necessary. The applicability of this equation to nonsta-
tionary processes appears to have first been recognized by Cramér and Leadbetter {19},

The domain of integration in Eq. (22} is a matter of some interest, If one wishes to cal-
culate only the expected number of positive slope zero-crossings, i.e., ihe expected number of
times that both

Gty =0 23}

and
Gir) >0 {24)

are both satisfied on the interval |t} < 7/2, the lower and upper limits of integration in Eq.
{22} should be chosen as 0 and oo, respectively. The resulting expression for »1,(0, 7},

m0.T) = [, @} [ di 121/6600.001, (25)

does not include zero-crossings of the type depicted in Fig. 8, for which g < §. Apparently, i,
is sensitive only to the "right type" of zero crossing, as defined by the Hmits of integration in
Eq. (22).

gity ¢

to

Fig. 8 — A sample function g{/) of the random process & {1) is dep-
icted as & function of time. The particular sample function chosen
has a down-crossing al lime ¢,

14
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The process G (r}) is now assumed to be formed as the difference of two stochastic
processes Y{r) and ¥,(¢). Thus,

G(r)y = Y1) — Y, (1), (26)

where Y,(¢) is referred to as the "threshold process". Without making any assumptions with
respect to the statistics of ¥ (r) and ¥,(s) (e.g., each process may be both nonstationary and
non-Gaussian) it follows from Eq. (26) that

f3c©.9) = [ [atdn iy v @& + 9.0 | N

The proof of this equation is straight-forward (cf. Ref. 27, p. 131). Assuming that the
processes, Y,Y,Y,, and Y,, are jointly Gaussian (cf. Ref. 17 for justification), their joint density
can be expressed in terms of their covariance matrix [27] A. The matrix A has four rows and
four columns, for a total of sixteen elements. Written in partitioned form, we have

_Jc cf
A - l C1 Co ], (28)

where the superscript 7 denotes the matrix transpose operation. The submatrices C, C,, and Cl'
are defined as

2
| ai) Cppan)
C= { Cipyltty a0 [ 29
U-%ﬂ(r) Cyll i!)(r’r)
Co= Cir,(00) ol () [ G0
and
Cy y(1,1) Cy”)'/(f,f)
Ci= C}',“y(t,t) Cy”,;(f,() ) @1
The scalar covariances that comprise these elements are defined by
CAB(f],!z) = EI[A (fl) - m,;(r,)] [B(fg) “mg(fz)”, (32)
where A and B take on the values ¥, Y, Y,, and f’},, as appropriate. Also,
my () = E{4()) (33)
and
o i) = Cualtr). (34)

It follows from Eq. (32) that Cy, (1) = Cyp(st) and C; , (t,) = Cy ; (t,1). Thus, the
matrices C and C, are symmetric. oo o Vo

15
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The elements of C are obtained directly from Bgs. {B-17), (B-20), and (R-23):

a it} = elmy (1} @ KDY, (35)
o 36y = elmy(r) @, {36}

and
Cyi(1,1) = ay(t) o ,(1), 3D

where e is the electronic charge, #{r) is the impulse response of the post-detector filter {(cf.
Fig. 1), my(¢) is the mean value of the current X(r) (cf. Fig. 1), and ®is the convolution
operator:

fWe g = f_ ru-xgx)ax (37a)
The relationship of my(r) to the radiance of the scene under observation and the optical

parameters of the IRST sensor is discussed in Appendix A, and expressed quantitaiively by Eq.
(A-2).

Expressions for the elements of Eq. (30} may be obtained as direct adaptations of Egs. (35)
{37}, 1t follows from Fig. 2 that
v, () = Kh, (=T @ X(r), {38)
where #,{rY is the Fourier inverse of H,{f). Taking the expected value of both sides of this
equation, we have
my”{f} = Kh,}(f—’rg} ® mx(f). {39)

which is analagous to Eq. (B-30). It may also be shown, analagous to Egs. (35) - (37) that:

o} (1) = eKmy() @ h2U—T,). (40)
o} (1) = eKmy(1) @ Lh, (e~ TH12 (41}

and ’
Cy”,;ﬁ(?,f} =g ?”(f) o r'“(f). {42}

It remains only to formulate similar expressions for the elements of €, in order to compiete the
specification of the joint density [,y ;.

Assuming that the processes Y{s) and Y,(r) are both derived from the progess X{r) by
means of the structure shown in Fig. 2, it is shown in Ref 17 that, if

h =T ity =0, (43)

then
C1 = 0 {44}

That is, choosing a sufficiently long time delay T, in Fig. 2 validates the factorization of the
fourth order density f,;, ; into the product of two second order densities:

.fyj«’}r'” 3;:“ {.Yd;‘»y.),j’;}) = f}'y (y-.}})fy“ jf‘” (.yﬂ -.j}(r)’ (4‘5)

16




NRL REPORT 8320

From Egs. (22), (27), and (45),

(o) = [ fatan 5, 5 @ n) I Jaglelfyi @etn}. (46)
With the change of variable z = g+, Eq. (46) may be written
”}J(() = EY” J'/H ln:JJ(‘rlya’yn) ]r (47)
where, by definition,
mJ(f,ynryn) = j:-, fz-“ﬁ(,ffy,-,(y,,,z)dz, (48)
and o
Ey L= [ [didn 7y @) L) (49)

The quantity m,, previously interpreted as the zero-crossing rate of the process G (cf. Eq.
(22)), is now interpreted as the threshold crossing rate of the process ¥ (1) (cf, Eq. (47)).

The quantity
n:l.f(”yna.}}a) = .’??J(fl) (50)
defined by Eq. (48) will be referred to as the "threshold-conditional crossing rate.”

Non-Stationary Gaussian Processes

Further development of Eq. (48) for the threshold-conditional crossing rate is contingent
on obtaining a suitable expression for the joint density f,,. The objective of this section is to
evaluate Eq. (48} for the particular case of a bivariate Gaussian density, Eq. (52).

The justification for assuming a Gaussian distribution for £, (and hence for Sy and f,; as

well) is discussed in Ref. 17. As shown in Ref. 17, the relative error in s, is approximately
equal to the relative error € in the density function of Y (7)),

Y—my
Ty

) =o7' ¢

] (1+¢€), (51)

where ¢ (.) is the Gaussian density function, Eq. (57). The Edgeworth series expansion [16] of
Jr(») provides a simple and easily evaluated expression for the relative error . Sample calcu-
lations described in Ref. [17] show that e is negligibly small for typical system and background
parameter values. Thus, the joint density fy; is now assumed to have the following bivariate
normal form:

~1
.f]/}'f(ynoz) = {2770- YO-Z(I_rz) 1/2) exp [_ (52)

w4 vl = 2ruv
2(1 -3 '

where the quantities my, oy, oz, and r, are obtained from Eqgs. (B-30) - (B-34). Also,

17
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¥ = {y,~myloy {53)
atd
v = (z-mylfoy,. {54)

Substituting Eq. (52) inte Eq. (48), it may be shown that [17]

mytiv,.e,) = [g—{l (=12 () to(p) + p@lm}, {551
¥
where, by definition:
o= [a- gz]"' (my + a7 —5,). (s6)
The functions ¢} and ${) in Eq. (55} are defined as follows:
¢i{xy = 2m) V2 exp(—x¥/2) (57)
and
P{x) = f,; di{z)dz (58}

The crossing rate Eq. (55} is originally due to Cramsér and Leadbetter [19].

Equations (47} and (55}, together, represent a formal means for calculating the mean threshold
¢rossing performance of the adaptive threshold processor depicted in Fig. 2. However, the
evaluation of Eq. {47) appears to present some significant calculational difficuities. These
difficulties are obviated by means of the approximate method of evaluation pursued in the fol-
lowing section.

Crossing Rates for Adaptive Threshold Processors
Numerical results obtained thus far indicate that the correlation coefficients r and r, are
typically much less than unity, as follows:
[r} = 1C€en) oy (Do 0 << 1 (59)
and

(7. (3 = ICY” y (1) {ay () rr,;.“(;}}'j[ << 1, {60}

where Eq. (59) comes from Eq. (B-24), and Eq. {60) is obtained by analogy to Eq. {59},

It follows from Eqgs. (47} and (49} that the threshoid crossing raie for stochastic threshoid
functions ¥, (/) may be written as

o

my(0) = [ fagan iie,mrr, @, (61)

—oa

Equations {59) and {60} permit considerable simplification of the functions appearing inside the
integral in Eq. (61).

18
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From Eqgs. (55) and (59):

fﬁj(flg, 'T)) =

ﬂlqs(u)w:(p) + p®(p)),
Ty

where u, ¢(-), and ®(-), are given by Egs. (53), (57), and (58), respectively.

and (59),

p= (mz—'n)/ﬂ'z.

By analogy with Eq. (52}, and making use of Eq. (60),
fy v, &) = ltr 7, ¢(ua)] [ogﬁ' ﬁb(pp)],

where u, and p, are defined similarly to Egs. (53) and (63) as
o = (C - myu)/o- yn
and

Py = (mgz —Olog.

It follows from Eqs. (61) - (66) and some algebra that

- ﬁl/2 GZZ{) myl‘lmmy
(1) = (2r) ¢ Flmz —mz),
O-YYH (Tyyﬁ

where, by definition

- 2 2
Ty, oy taoy
and
7y E(]’i‘*‘ﬂ'i

(62)

(56)

(63)

(64)

(6%

(66)

(67)

(68)

(69)

The quantities ny (1), oy (1), and o (1), in Egs. (67) - (69) are calculated by means of
Eqgs. (39), (40), and (4!}, respectively. Finally, the expected number of threshold crossings in

a time interval T, may be obtained as

i (0,7) = fn'q_,(.f) dr,

T,

with s1,(1) given by Eq. (67).

(70)

Equation (67) provides the basis for analyzing a much broader range of possible adaptive
threshold schemes than Fig. 2 might suggest. For example, straightforward generalizations of

Eq. (67) may be applied to the structures depicted in Figs. 9-11.

19
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Holf) b Y it

Xit} > DELAY -+~ DELAY

1

Hif) p————— Yit}

Fig. $ — An adaptive threshold scheme is ilustirmed. Each
of the detay elements introduces o delay of 7, seconds,
The significance of the random cuarrents Y{:}, Y/}, and
¥, (s} is seen by iaspection of Fig. 1. The block diagram
shown here is actually just one part of the threshold pro-
cessing receiver shown in Fig. |,

‘——» | Hotf) e vt

R L N L 2N J
X(t) pELAYHS LelDELAY ISS DELAY

Rift p———— ¥{t}

Fig., 10 — A candidale adaptive threshold scheme iy iltus-
trated  thul generalizes the slruciure of Fig. 9. The
threshold-establishing approach shown here is realized in
terms of u tapped delay line with 28 taps, Once again, the
significance of X1}, ¥{}, and ¥,{0). follows from Fig 1.

20
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———— Y,

t 1 f t

H q(f) Hpy(f) Hon — 1 H oy (£}

] 1 L N L 2N —T
X(t) —L»] DELAY —;; DELAY -Ig DELAY

Fig. |l — The lapped delay line adaptive threshold scheme
shown here generalizes the structure of Fig. 10. The transfer
functions /1, (), #=1.,2, . ... 2N al each of the 2N taps of the
lapped delay line are design variables, chosen to maximize the
receiver’s performance against a parficular background scene, or
set of background scenes. There is no « priori teason why the
various delays should be chosen as equal to one another, other
than for fabricational simplicity. More generally, additional
degrees of freedom are incorporated by allowing these delays 1o
take on distinet values.

While the function F(mzﬂ—mz) in Eq. (67) is fairly complicated, its zero-ordinate is
unity:
F(0)y =1. (71)

Equation (71) is a highly desireable feature, as explained in the next section.

It is noted that for uniform backgrounds,*

(ay /o) = (Af/A0) (72)
(oy /o D= (ALIAL?, (73)

and

where Afis the noise bandwidth of H(/), and Af, is the noise bandwidth of H,(f) (cf. Fig.
2). It follows from Eqs. (68), (69}, (72), and (73) that

oy =afil+ (A./},/Af)] (74)
and
oy o il+ (Af/AN (75)

Eq. (73) is derived by assuming a rectangular-shaped f7(f) having an upper cul-off frequency /, and a noisc
bandwidth A/ = f,.

21
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Equations (74} and {75) are good approximations so long as 1, (1} is slowly varving compared
to h{r) and h,{r).

DISCUSSION

Experience with the numerical evaluation of Eq. {70), with m,(1) given by Eq. (67), has
shown that the principal contributions to the integral m; of m; accrue in the neighborhood of &
discrete set of times.

Moreover, it has been shown that these important discrele times are of two iypes:
“mean-crossing times,” and "times of ciosest approach" {17].

Mean-crossing times (. satisfy the following two conditions simultaneously:
fﬂy({ﬁﬂ(‘) =m l"”{!uu) (76}

and
m}f{fﬁn‘} > H.?Y“('r»u')‘ {T?}

For each solution of Eq. (76} that satisfies constraint (77, Le., each time the mean current
my(t) crosses the mean threshold m ,«"(f) with positive slope, the expecled number of crossings
my is incremented by unity. Whenever mean-crossings exist during the interval 7, it is gen-
erally not necessary 1o perform the integral of Eq. (70); in this case, the expected number of
threshold crossings #,(0, T} is well-approximated by the number of mean-crossing times ¢,
during the interval T,. Clearly, it is desireable that no mean-crossing times exist except when
there is a target in the scene; this may be taken as a reasonable first principte of search set
design for operation against structured backgrounds.

If my{:) lies below g’]'[!) on the time interval T,, 1e., if there are no mean-crossings

during 7,, the crossing count integral Eq. {70} is generally dominated by contributions accruing
in the neighborhood of "closest approach fimes” 1, where by definition

my ) = my (1,). {78y

It follows from Egs. (673, (71}, and (78), that the mean threshold crossing rate for adaptive-
threshold (AT} processors is

PV My —iHy

(79)

!?'7_”'(1) = (271')_1/2

r ;'}'” (F }'};.

in the neighborhood of all closest approach times. Thus, the complicated function F{) appear-
ing in Eq. (67} is generally not needed in evaluating Eq. (70},

Anatogous to Eq. {79}, the mean threshold crossing rate for fixed-threshold {FT} proces-
$0OIS is given by
Ty
Wl .
(¥ 0 ¥

Yooy ] (86

0y

e} = iy iy, 0 = Q)12

22
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2. ABSTRACT (continued)

formalism for the threshold-crossing statistics of nonstationary noises, originaily developed by Rice,
Crameér, and Leadbetter, The present work is pursued further in a companion paper in which various
simplifying approximations and iltustrative numerical examples are presented. The theory developed
in these two papers is directly applicable to design parameter trade-off studies for infrared search and
track {IRST) devices,
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Equation (80) is derived from the background-conditional crossing rate, Eq. (62), by imposing
a saddle point condition analagous to Eq. (78):

p==(mz;—y)o,=0. (81)
Alternatively, Eq. (80) may be derived by noting that for fixed threshold processors:
o—f,”=cr§, =0 (82)
and
my = Py (83)
From Egs. (68), (69), and (82},
G'%ry" = 0'% ' - (84)
and T iy = (}'% (85)

for fixed-threshold processors. Substituting Eqs. (83) - (85) into Eq. (79), the adaptive-
threshold crossing rate #i,, is seen to reduce properly to the fixed-threshold crossing rate #1 .+
given by Eq. (80).

The advantages and disadvantages of adaptive threshold (AT} processing vis-d-vis fixed
threshold (FT) processing may be evaluated by comparing the crossing-rate expressions in Egs.
{79) and (80).

It follows from Eq. (80) that fixed threshoid processors will suffer background-induced
mean-crossings whenever the peak target amplitude is less than the clutter amplitude. This
situation is depicted in Fig. 6. Thus, it may be said that target-to-clutter ratios less then unity
cause the FT processor performance to be "background-structure-limited” (BSL). In this case,
each "false alarm” can be associaled with a structural feature in the backgound. The effect of
quantum noise (as reflected in the magnitude of o, for example) is then totally overshadowed
by background structure effects.

Inspection of Eq. {(79) and Fig. 7 shows that an Adaptive Threshold (AT) processor need
not suffer background-induced mean-crossings. If the filter A,(/) (cf. Fig. 2 ) can be chosen
such that my (1) "tracks” the background-induced variations in #,(r), the background-induced

mean-crossings can be eliminated.

Such false alarms as then occur are distributed randomly in time, and are not associated
with particular features in the background scene: the residual false alarms are due to quantum
noise. An IRST sensor operating in this regime (e.g., Fig. 7) is said to be "quantum-noise-
limited" (QNL) in its performance. Clearly, QNL ({(quantum-noise-limited) operation is
preferable to BSL (background-structure-limited) operation.

It should be noted that the adaptive threshold performance advantage just described is

only realized when the background scene is non-uniform. The performance of AT processors is
generally inferior to the performance of FT processors when the background scene is uniform
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and of known brightness. In this case, the adaptive threshold false alarm rate {(FAR ) is
greater {i.e., worse) than the fixed threshold false-alarm rate { FAR):

FAR ;7 > FARt. (86}

In order to make the false alarm rate comparison above meaningful, # is assumed that the
adaptive-threshold gain X in Fig. 2 has been adjusted to achieve equal target-detection sensitivi-
ties for the two processors being compared.”

A false-alarm penalty (FAPY is now defined:
FAP = 10log g (FAR ¢/ FAR 1) (87)
The false-alarm penalty is a measure of the performance disadvantage that agcrues when an AT
processer is used when it truly isn’t needed. Eq. {87} may be written as
FAP = IOIOgIU {m4;,fmfr§ dB. {88}
with m,4r and si.r given by Egs. {79} and (80), respectively. The evaluation of Eq. {88} is

simplified considerably by making use of Egs, (74} and (75). It follows from Eags. (74}, (75),
{79}, (80), and {88} that:

e ﬂ!y”_?ﬂy :
FAP =217 ——| |———1 + 5togs [1—a{l—all, dB, (89}
}‘{‘(x Ty
where, by definition,
Af,
= |1 {90}
Equation (89) simplifies still further in the limit & <<i{. Thus
my ~my :
FAP =217« -1 dB o<, {91}
¥ ¥

As an example, it is assumed that the threshold-constant K in Fig. 2 is adjusted uniil * the
threshold is five sigmas above the mean," i.e.,
f?’?y“'_my
— =5 9n

Fy

when the search set is observing a uniform scene of known brighiness. Furthermore, it is
assumed that the noise bandwidth of the target fitter H{f) in Fig. 2 is twice as large as the
noise bandwidth of the threshold-setting-filter H,(f),

Af, i
o = f= . (93}
Af 2
it s assumed that the threshold tdtee 26,66 rosponds too stowly 1o suppress Tast rise-time target-induced  threshold
crossings.
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It follows from Egs. (89), (92), and (93) that the false alarm penalty is :

FAP = 17.46 dB, (94)

corresponding to a value of FAR ,r ( adaptive threshold false-alarm rate) about 56 times worse
than FAR 7 {fixed-threshold false-alarm rate).

Generally, Af, should be chosen smaller than Af to both minimize the false alarm
penalty, (Eq. (89)), and to prevent a too-rapid threshold response that would tend to suppress
target-induced threshold crossings. On the other hand, Af, should be chosen large enough to
allow the threshold to accurately follow most of the structure in the background scene. Clearly,
the choice for Af, involves degrading system performance against uniform backgrounds for the
sake of improved performance against non-uniform backgrounds.

It appears likely that a more favorable trade-off could be achieved with the receiver struc-
ture shown in Fig. 9, both from the standpoint of (a) decreasing the false alarm penalty, Eq.
(89), and (b) improving the background tracking properties of m,/”(r). Equation (79) and the

entire analysis of the preceding section is easily adapted to the structures of Figs. 9-11. The
false-alarm penalty, Eq. (89), decreases roughly as (2¥)~"/? for the detector of Fig. 10. The
improvement in uniform background performance thus obtained for large values of N is gained
at the expense of degraded performance against cluttered scenes, as compared to detectors with
small values of N, The good background-tracking capability of the structure in Fig. 9 combined
with the low false-alarm penalty of the structure of Fig. 10 can be obtained by employing a
two-dimensional-detector array with time-delay and integration (TDI) logic.

In order to put this discussion on a concrete quantitative basis, particular background and
target radiance distributions must be chosen, and the mean current my (7} calculated by means
of Eg. (A-2) in Appendix A. The target detection and clutter rejection capabilities of a given
candidate adaptive-threshold processor can then be analyzed by means of Eq. (79). Intercom-
parisons of the numerical results thus obtained for a variety of different processor structures
should then allow quantitative conclusions to be drawn concerning such issues as:

e The performance penalty caused by failing to match the sensor’s instantaneous field-
of-view to the angular size of the target.

e The potential performance advantages of time-delay and integration (TDI).

® The best value of ¥, and the desireability of having different transfer functions H,(f)
for each of the 2V taps in the tapped delay line structure of Fig. 11,

® The advantages that may be gained by employing two-dimensional threshold process-
ing, in which the "target signal” Y (s} and threshold function ¥,{/) are derived from detectors
scanning at different elevations. '

The only important obstacle to performing analyses of the kind described above is the lack
of high-spatial-resolution, radiometric, infrared background imagery.
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Appendix A

CALCULATING THE AVERAGE PHOTOCURRENT
FROM BACKGROUND DATA

The objective of this Appendix is to present Eq. {A-2}, which expresses the average value
of the random current X (1) (cf. Fig. 1),

my(ty = E{X{}}, {A-1)

as a function of the scene radiance distribution s, {r) and a number of important sensor param-
eters.

As derived in Ref. 17,
ety = KR, [ MTF(D) P (8) me(t) exp G2ut-vi)d. (A-2)

The various quantities appearing on the right-hand-side of Eq. {A-2} will now be defined,

The constant K, is given by
K, =m7,/Q/%7, (A-3)

where 7, is the transmittance of the optics, and f¥ is the focal length ratio of the optics.

The constant R, is the current responsivity, given by:

Ry=mefhy, {A-4)

where m is the defector guantum efficiency, e is the electronic charge, / is Planck’s constant,
and v is the average optical frequency of the incident light.

The variable of integration in Eq. {A-2)}, f, is the two-dimensional vector spatial fre-
guency. The quantity MTF(f) is the modulation transfer function that characterizes the image
blurring effect of the optical train, normalized such that

MTF(O) = 1. {A-5)

For the detector geometry depicted in Fig. Al, the quantity P(r) is defined as follows:

1 re @:!ﬂ

P(f} - 0 (S (fd‘('f ’

{A-6}

26




NRL REPORT 8320
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Fig. Al — Focal Plane Geometry. The focal
plane irradiance is stationary in the coordi- / ’
nate system with origin 0. Vector r, locates o AT
the center of a detector of area Age. For . 0 \
scanning sensors, r, is 4 funclion of time. / /
V2
+
/‘LO 3

The function F(f) is defined as the two-dimensional spatial Fourier transform of P(r):

9() = [ P exp(j2mf r)dr. | (A-7)

Similarly, m.(f} is the two-dimensional spatial Fourier transform of the radiance distribution
nt; (r). It should be noted that my (1), like my(r) in Eq. (A-2), is an ensemble average value
over the photon fluctuation statistics of the incident light.

The radiance distribution s, (r} is characteristic of a particular infrared scene, and may be
estimated by means of a radiometric Thermal Imaging System [1,2] (TIS} of higher spatial
resclution than the model system. It is also highly desirable that the dwell time of the TIS be
much longer than that of the model system, since the analysis requires knowledge of the mean

radiance of the scene established by averaging over the photon fluctuation statistics of the
incident light*.

The spectral filter chosen for use with the TIS should match the combined TIS optical
train/photodetector spectral response lo that of the model system. This is necessary because
there is no way to reliably calculate the radiance of a scene measured in a waveband Ai, in
terms of the radiance of the same scene measured in a different spectral band Ax,.

The quantity v in Eq. (A-2) is the focal plane scan velocity, which may be caiculated as
lv| = 27/% D,/ T, (A-8)

where D, is the diameter of the optical aperture, and 7} is the system frame time.

.
Averaging out the pholon noise by either increasing the TIS dwell time or by performing frame addition decreases the
noisingss of the TIS image, and improves the goodness of the TIS imagery us an cstimale of my (r).
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Appendix B
NOISE CURRENT CORRELATION FUNCTIONS

The object of this Appendix is to derive Eqgs. {B-30} - (B-34), which are needed to evalu-

ate Eq. (55} for the threshold crossing rate m{t|v,, 7.}

The starting point for this discussion is the linear system input/output relation between

the random processes X{/) and ¥{/} {cf. Figure 1}:
yi) = f,m dop X{pudhCi—u).

It foilows directly from Eq. {B-1} that
('}'}‘(fl, 52) = ffm (!,LL['!?\ (\\{}\ ,(L} h(f‘—h) }f{fg“"p‘.},

where the covariances Cyy and Cyy are defined by
Cryley,or) = EY ) —mp G EY O —m Gl
Cornwd = EHX ) =m0 IX QY —mrofuo
and where

my ey = E{¥ QT
and

me(1) = E{X{OL
With the definition
2y =¥y,

it foltows from Eg. (B-3} that
Cogley, 1) = 8, {Cryley, 02}
and
Coplin 1 =8, 8, 10l )1
From Fgs. (B-2}, (B-8), and (B-9),
Cortin i = ff 7 duan Copln, ) il —n) 8, (=)

and

(r//(t'}, fz} = ffﬂo f[lu,f[)\ (?\'_li'(l\,;‘i} f‘};‘i‘!{h_r\} a,irl‘n'(fz“‘ﬂ-).

Setting 1, =1;=1in Egs. (B-10) and {B-11), and noting that
Coplt 1) = a3() = E{ZHD} — mi),
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Appendix A generalizes Eq, (3).
Appendix B generalizes Eqgs. (4) and (5).

Eq. (55), originally derived by Cramér and Leadbetter [19), generalizes Eq. (9).

As expected, the analysis in this report reduces exactly to the simple Rice equation
method in the uniform background limit. More generally, the method developed in this report
is also applicable to non-uniform scenes (i.e., scenes containing targets and/or structured back-
grounds). :

The techniques developed in this report are applied to the evaluation of a number of can-
didate signal processing structures in a companion paper to the present work [18].

It is noted that tracking algorithms are neither modeled nor discussed, although they may
play an important role in clutter rejection as well as target tracking [20]. Moreover, no con-
sideration is given to the availability of target and backgound infrared radiance data suitable as
model inputs, No strategies are proposed for synthesizing IRST processor structures to satisfy
gither a priori performance requirements or optimization criteria. The contribution of this paper
is the formulation of a performance analysis model: Complete descriptions of an IRST sensor
and the radiance distribution of a particular scene are required as inputs. As output, the model
generates the probability that the IRST device declares (rightly or wrongly) a target’s presence
in the given scene.

SCANNING BLIP SENSORS: ELEMENTARY CONCEPTS

A Basic Threshold Receiver

In order to provide a frame of reference for the following discussion, it is necessary to

describe a simple IRST receiver structure, and to define the parameters used to characterize
IRST performance.

The probability that the IRST device makes a target declaration when a target is in fact in
the sensor’s field of view is called the Probability of Detection (P;,). The average rate at which
false target declarations occur is termed the false-alarm rate (FAR).

A basic threshold comparison receiver is shown in Fig. 1. The current X (¢) at the output
of the detector is input to an electrical filter of transfer function H(f). The output current
Y (1) of the electrical filter is compared with a threshold Y,{t)}. If Y(r) exceeds the threshoid,
the presence of a "target” is declared; otherwise, no target declaration is made. Target detec-
tions and false alarms are both manifested as threshold crossings, suggesting the following
approach to IRST performance assessment:

. The expected number of threshold crossings that a particular processor experi-
ences against a given infrared scene is first calculated. As discussed in Appendix
C, the expected number of threshold crossings during a given time interval may
be interpreted as a probability of target declaration.
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it follows that
Cyr (1, 1) = _ff_m dpdh Cyx(h, w) h(t—2) 8,7 (1 =) (B-13)

and
o2 = [ [ dudn Cuxh, @) 880 =2) 3, (1 —p). (B-14)

Setting 1=+, =tin Eq. (B-2), and noting that
Cyy(t,) = a3(0) = E[YH)} — m}(0), (B-15)
it follows that
o3 = [ [ dudn CoxO, wh (1= (1—p). (B-16)
An expression for Cyy(A, p) is now required before the analysis can be carried any
further. An adaptation of Eq. (4.3.13) on p. 115 of Ref. 28 leads to:
o030 = e [ du n21—p) myu), (B-17)
where ¢ is the electronic charge. Consistency between Eqs. (B-16) and (B-17) requires that

CyyN, ) = emy(u) 8 —p), (B-18)

where &§(.) is the Dirac delta function. Covariance functions like Eq. (B-18) are characteristic
of non-stationary white noise {26,29]. From Egs. (B-13), (B-14), and (B-18),

Coal ) = e f du (r—p) 8,h (= p) mylus) (B-19)
and -
o3 =ef du[9,h0—w1? my(w). (B-20)
Noting that
HG—w) 8,00 —p) = —; 8, h1 — ), (B-21)

it follows from Egs. (B-19) and {B-21) that

Cro 11y = 5 et [ du 2 =) myo) (B-22)

From Eqgs. (B-17) and (B-22),

Cyz(t, 1) = % o)) = o (1) o,(1). (B-23)
Defining r(t) as
r{t) = Cyz(f, 1) [o y(!)O'z(f)]ﬁl, (B-24)
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it follows from {B-23) and (B-24) thai
r{t) = {o (/o (D). {B-25)
Taking the expected value of both sides of Eq. (B-1} leads to the resuit:

my(r} = f:; dp myCud H{—u). {8-26)

Taking the time derivative of (B-1}, we have
Vi =z = [ dp X 9,0~ ). (8-27)

Taking the expected value of both sides of {B-27}, we have
a0y = [ du meCu) 8,06 —p).
That is,

mzit} =3, f_z du my{p) h{t—ult {B-28)

From Eqgs. {B-26) and (B-28},
ma (0} = m(1). {B-29)

Defining the convolution aperator as in Eg. {37a), Egs. (B-26), (B-17), (B-20), (B-29), and
(B-25) may be written as:

mylt}y = it} @ mylr), {B-30}
o) =e W) @ my(1), {B-31)
o3 = el (D12 @ m o), (B-32)
myley = m ey, (R-33}
and
rie) = {o (Do {0}, (B-34)

Equations (B-30} - {B-34} are the desired results.
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Appendix C
RELATIONSHIPS BETWEEN FAR, P, and iy

Relationship Between FAR and »;

The complete description of an IRST sensor’s performance under a given set of opera-
tional conditions requires the simultaneous specification of both the False Alarm Rate (FAR)
and the Probability of Detection (£,) for a "target” within the sensor’s field of view. However,
both "false alarms" and target detections are manifested as threshold crossings by the signal pro-
cessor. Thus, the object of this Appendix is to relate the traditional IRST performance meas-
ures, P; and FAR, to the expected number of threshold crossings m; over prescribed intervals
of time.

It is assumed that the average current my{(¢) is known” on an interval of time |t| < T/2.

The expected number of threshold crossings on the interval |f|<T/2 is defined as
m,;(0, T). Defining the false alarm rate as the expected number of threshold crossings per
"reference interval" T, the foliowing relationship obtains between FAR and m;,:

FAR = (T o/ T) m;0, T). (c-D

For example, if FAR is defined as the average number of false alarms per week, T,y is set
equal to the number of seconds in one week; if FAR is defined as the average number of false
alarms per system dwell time, then T is set equal to the dwell time (again expressed in units
of seconds).

It is implicitly assumed in Eq. (C-1) that the scene under observation does not include a
target, so that each threshold crossing that occurs gives rise to a "false alarm."

Relationship Between P, and m;: First-Order Approximation

Although not as straight-forward as Eq. (C-1), a relationship between P, and m, can also
be established.

As prelude to the definition of Pj, a "decision interval" T}, is first defined. The interval

Ty is presumed to bracket the entire period of time during which the current ¥ (1) manifests
target-induced fluctuations.

Assuming that a target is present in the scene, the number of threshold crossings that
occur during the interval T, is defined as the integer random variable J. The discrete probabil-
ity density function of J/is denoted as /,(;).

.
The quantity my(rd may be specilied o griori, or 1 may be calculated in terms of the radiance of a parlicular back-
ground scene (as discussed in Appendix A).
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The probability of detection Py is now defined as the probability that ene or more thres.
hold crossings occur during the decision interval:

Py =3 1) (c-2)

i=t

(The likelihood of a background-induced crossing during T, has been neglected.) Unfor-
tunately, the problem of obtaining a formulation for f; appears to be quite difficult {30]. The
focus of this paper has been on the development of formulations for the expected number of
threshold crossings:

@zmn=imm. -
In order to establish a relationship between Pp anc{ _m 1, Egs. {C-2) and {C-3) are writien as:
Pp = £(D) + izf;{j} (-4
=
and
m= 10+ B, (c-5)
f

Assuming that the probability of two or more threshold crossings is negligible during the deci-
sion interval Tp, Egs. (C-4) and (C-5) can be estimated as

P() = fj(” {C-ﬁ}
and
Hy = fj(})> (C-71)
It follows from (C-6) and (C-7) that
P;) = m;(@, Td) (C‘S)

According to BEq. (C-8), the expected number of threshold crossings during the decision inter-
val T, provides a good estimate of the detection probability Pp;, so long as the probability of
two or more crossings during T, is negligible.

Relationship Between P, and »,: Proposal for a Second-Order Approximation

It appears only reasonable that an improved estimate could be obtained for P, if the vari-
ance «; of J were known in addition to the mean m; of J It wiil now be shown how
knowledge of o7 can be used to calculate a second-order approximation for Py {compare with
Eqgs. {C-4) and {C-6)}:

Py o= (1) + £,02). (C-9)

Unfortunately, the technique described in this section for calculating the second-order
approximation to P, cannot be implemented untii a formulation for o} is developed analagous
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to Eq. (67) for my. In this connection, it is noted that Bendat has derived an equation for the
crossing count variance of stationary processes [31] His result (cf. also Ref. 30) is far more
complicated than the analagous Egs. (8) and (9) for m;. Thus, a generalization of Bendat’s
result for ¢} to the case of nonstationary processes and stochastic threshold functions may
prove to be a difficult problem, Nonetheless, it is now assumed that a formulation for o} can
be obtained, analagous to the development for nt,; as noted above and found in the main text.
Analagous to Eq. (C-3),

of = {""' 7 fJ(j)] —m}. (C-10)
j=1
Substituting Eq. (C-3) into Eq. (C-10) leads to the following expression for o : |
ol = £,(1) [1—f,(1)] +45,2) [1—f,(1) —f,(z)] +E, (C-11)
where .
- - w 12
E,= 3 Ar-2 [f(l) +2f(2)] > i IZ jf] : (C-12)
=3 i=3 f=3 )

Assuming that the probability of three or more threshold crossings is negligible during the deci-
sion interval, Egs. {C-3) and (C-11) are approximated as:

my = f,(1) + 2£,(2) (C-13)
and

o= £,(1) [1 —f,(l)] +4£,(2) [1—f,(1) ~fJ(2)]. (C-14)

Calculation of my, from Egs. (67) and (70), and an analagous calculation for o 2, enables Egs.
(C-13) and (C-14) to be solved for approximations to /(1) and J/(2). The second-order
approximation to Py is then obtained by means of Eq. (C-9).

If Eq. (C-9) is found to yield an appreciably different result than Eg. (C-6), third-order or

even higher-order approximations to P, may be required; otherwise, the first-order Eq. (C-6)
is then verified as a good approximation for P,,.
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DIRECTION OF

SCAN/

BACKGROUND DETECTUR i
Yit
Yo'y EgraBLisH
THRESHOLED
YES
[ulta3
TARGET
DECLARATIGN
CONTINUE
SCANNING
NO TARGET
DECLARATION
Fig. 1 — A basic threshold comparison receiver. The photodetector in this

figure is "idealized", in the sense that it is presumed to have & perfect all-pass
electrical frequency characteristic; the frequency-dependsnt part of the detector
responsivity is lumped together with the transfer function of the post-detector
filter to obtain F{/). A “target declaration” is mads whenever the fittered
curtent ¥{r} exceeds the threshold level ¥, ()

. If the specified scene is known to contain a target, the computed probability of
target declaration is interpreted as a Probability of Detection {Pp}; otherwise, a
False Afarm Rate (FAR) interpretation is given.

As will presently be discussed, it is highly desirable that the threshoid-establishing
mechanism suppress clutter-induced threshold crossings by increasing ¥, (/) when ¥{s} is
"clatter-like.”

Rather than allow Y,{s} to take on an g priori constant or functional value, it is necessary
to establish the threshold by some means that “adapts” V,{¢} to the prevailing background con-
ditions.

A similar type of signal processing problem has been addressed in the radar [21,22} and
sonar {23] literatures. A candidate adaptive threshold scheme adapted from the earlier work
{24} is depicted in Fig. 2.

The block with transfer function exp (—j2% /T, introduces a delay of T, seconds. The
triangular-shaped block in this figure denotes an ideal all-pass amplifier of gain K. Note that
the delay time T, gain K, and transfer functions H,(f)} and H (/) are all design variabies.
Strategies for choosing the design variables in order to satisfy particular performance require-
ments or optimization criteria wilt not be discussed. This report is devoted to developing a for-
mulation for the expected number of threshold crossings for IRST receivers structured as in
Fig. 2, under the assumption that the design variabies have all been specified.
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PASSIVE INFRARED SURVEILLANCE
PART I: MODEL FORMULATION

INTRODUCTION

This paper describes an analytical model for predicting the performance of a particular
class of infrared sensors generically described as infrared search and track (IRST) devices. An
IRST system generally consists of one or more photodetectors located in the focal plane of a
scanning optical telescope, and a complement of signal processing electronics to process the
detected photocurrents. The signal processor’s task is to determine whether or not an object of
a particular type (a "target”) is anywhere in the sensor’s field of view, while keeping the: fre-
quency of false target reports to an acceptably low level.

Thus, the Neyman-Pearson criteria conventionally applied to radar systems is appropriate
also as an objective of IRST processor design: the target detection probability (Pp) should be
maximized for a given maximum tolerable false alarm rate (FAR). - :

The IRST is a nonimaging device, as contrasted with forward looking infrared (FLIR)
imaging systems [1,2]. The search and track device may be required to keep a full hemisphere
(27 steradians) under constant observation, to have a resclution of one milliradian or less, and
to operate without human assistance for long periods of time. The challenge this presents to
the system designer is further magnified by the abundant opportunities for target/background
confusion offered by such typical background scenes as cloudy skies and cities.

Previous attempts to model background effects on IRST system performance have focused
on the Wiener spectrum approach [3-9], a frequency domain technique originally developed for
calculating the noise variance in communication circuits. Unfortunately, unlike the noise
processes typically assumed in statistical communication theory [10,11], the IRST photocurrent
is a highly non-stationary random process. As the sensor scans across a structured background,
the spatially non-uniform scene brightness is mapped into a photocurrent whose mean and vari-
ance are both functions of time. The inadequacy of the Wiener spectrum method under these
conditions has been appreciated for many years [12,13].

The IRST model developed in this paper requires as input complete descriptions of the
IRST sensor and the scene radiance distribution (possibly including a target). As output, the
model generates the probability that the IRST device declares (rightly or wrongly) a target’s
presence in the scene. 4 priori knowledge as to whether a target was in fact present in the
specified scene ailows interpretation of the probability of target declaration either as a probabil-
ity of target detection (Pp) or as a "false alarm."

Photon fluctuation noise is the only stochastic aspect of the model; the background must

be specified as a radiance map of arbitrary, but deterministic, structure. Thus, the performance
predictions made with this model are background-conditional.

Manuscript submitted February 13, 1979,
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Previous works describing analysis techniques for IRST systems (e.g., Refs. 14 and 15}
are restricted in validity to uniform scenes. The contribution of this paper is an original
method for calculating IRST performance (i.e., the parameters P, and FAR) that is inherently
applicable to non-uniform scenes. The method described here can be used to assess the rela-
tive merits of a variety of IRST system concepts, all operating against a particular infrared
scene. Alternatively, an IRST sensor’s background-conditional performance can be evaluated
for cach member of an ensembie of scenes, in order 1o gstablish ensemble average performance
statistics for a realistic range of operational environments.

Before launching into the main body of analysis, a treatment of the elementaty concepts
invalved is first presented in the next section. The latter part of the subsection {(Current Statis-
tics) presents a brief discussion of how values for the mean and variance of a photocurrent
{i.e., the "current statistics”) are obtained from knowledge of the brightness of a presumably
uniform background scene.

The final part of the next subsection (Crossing Rates for Fixed Threshold Detection)
presents Rice’s well-known equation, which is Eq. (9) in this text, for the threshold crossing
rate of a stationary Gaussian random process [18]. Evaluation of Eq. {9} requires knowiedge of
the mean value and variance of the Gaussian process. A description of IRST performance
against uniform background scenes is obtained by inserting the current statistics from the
Current Statistics Subsection into Rice’s equation, Eq. {9}.

Rice’s equation, by itself, is devoid of physical content: it applies equaily well to any sta-
tionary Gaussian process. All of the physical parameters—the optical and elecirical characteris-
tics of the IRST sensor and the radiance of the background scene—are introduced through Egs.
{3)-(5) for the current statistics.

The method described above, using Rice’s equation to evaluate search set performuance
against uniform scenes, is well known [4,14]. Since a target’s presence in the scene would
necessarily render the scene non-uniform, and since the method based on Rige's eqguation is
valid only for uniform scenes, Rice’s equation can be used to calculate FAR, but not Py,

The first method presented for calculating search set performance against non-uaiform
scenes is given in the Non-Uniform Scenes Subsection. Although this method is a simpie,
heuristic, extension of the well-known uniform background result reviewed in the subsection
on Uniform Scenes, it appears to be original. The heuristic approach of the subsection on
Non-Uniform Scenes has the advantage of being both easy to understand and casy to apply,
Moreover, comparison with rigorous methods indicates that the heuristic method vields numeri-
cally accurate performance predictions as long as the variations in the background scene are not
too rapid [17,181.

The IRST performance model developed in the Analysis Section is a rigorous generaliza-
tion of the Rice equation method. In fact, a point-by-point correspendence can be established
between the simple, well-known analysis of the Uniform Scenes Subsection and the more gen-
eral, new analysis in this report.
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exp (j2nfTg) }-———W Yolt
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Fig. 2 — A simple adaplive threshold scheme is illustrated, ' The trapsfer -
function exp(—j2w s T,) introduces a delay of T, seconds, ensuring
decorrelation of the randem processes ¥(r) and ¥,(1). The significance of
the random currents is scen by inspection of Fig. 1.

Uniform Scenes
Current Statistics

When the sensor of Fig. 1 scans across a uniform background scene, the output current
Y (1) is "statistically stationary." The meaning of statistical stationarity will now be discussed as
background to the discassion of non-uniform scenes and non-stationary processes that follow in
the Non-Uniform Scenes subsection.

It is assumed that the sensor is scanned and re-scanned over the same scene, and that
there are no changes in either the scene or the sensor from one scan to the next,

The current y{s) during the course of any one particular scan is called a "sample func-
tion" of the random process Y(:). (The process Y (), in turn, may be thought of as the
infinite ensemble of possible sample functions.) The current sampte function obtained on the
n'" scan is designated y{r;n). We now consider a particular one of these sampie functions,
»(t;1), depicted in Fig. 3.

The time variations in »{r;1)} have their origin in the time-of-arrival fluctuations of the
individual photons incident on the detector.¥ Thus, the fluctuations in y(7;1) are independent
of the scan velocity and are present regardless of whether the sensor is scanning or motionless.
The average current at a particular instant of time 7, may be defined as the "ensemble average";

4
my()=lim {5 3 ) =YL W

=

In arder for Y(¢) to be a stationary process, it is necessary that m, (), as defined in Eq. (1), be
independent of time. Thus,

my(t,) = my(1,),

. .
Consisien! with a convention of random process theory, stochastic quantitics are assigned capilal lelters, with sample
vilues designated by the corresponding lower case letlers.

TThis kind of noise is often called "pholon fluctuation noise” or "guantum noisc.” When the quanium neise associated
with the background light is the dominant noise type in the sensar, the sensor is said to be operating in the "Buck-
ground Limited Performance” (BLIP} regime.




RICHARD A. STEINBERG

Yo - - —_—
A AN
t U 3 ~ t
Fig. 3 — Three sample functions of the random
vit:2) | currant ¥{;} are shown as functions of time. The
' currgnt ¥{¢} is taken at the output of the post-

detector filter as the sensor is scanned over a uniform
scene {cf. Fig. 1}. Tne sample functions are desig-

Yo = - -~
/ nated v(r;n), n=1,2,3, ... The sample functions
display random time variations caused by time-of-

" —:— -; arrival fluctuations of the individual photons incident

o &J\ on the detector. Since the current ¥{/1 is stationary,
the ensembie average mean value {variance} defined

) by Bq. {1} {Eq. {2}} is the same al time /, as at lime
yit:3} 4r r1, where times 7, and 1, are arbitrary,

-
[+]

-
—

-

where the times 1, and ¢, are totally arbitrary {cf. Fig. 2). Similarly, the mean-square deviation
of ¥Y{¢} from its average value {i.e., the "variance” of ¥) may be defined at each instant of time

as

AN —oa

acil(ry = lim {%‘\? % [¥(n) — mp(OP = ELLY (O —m, ()13, (N

n=1

The variance ¢ §, like the mean my, is independent of time for stationary processes.
Eguations (1) and (2) are satisfactory for illustrating the concept of "ensemble averaging®,
however, it is desireable to have a different means for actually calculating the values of sy and

o} in terms of standard background and sensor parameters.

It is first necessary to define the average value my of the current X{1) (cf. Fig. 1):

miy = E{X(1}] = memg, {3}
where
. lect
1 = quantum efficiency of the detector gecirons
photon

. coulombs

¢ = electronic charge {——————
electron
f
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and

photons

l incident on the detector.
sec .

mg= average background photon flux I

It may be shown that for sensors operating in the BLIP regime the mean value and variance of
Y{¢), originally defined by Eqgs. (1) and (2}, can be calculated in terms of my as follows:

my = H(O) my, (4)
and [25] '
o} = 2emyAf, (%

where A (0Q) is the zero-ordinate of the transfer function H{f) (cf. Fig. 1), and Afis the no_iSe
bandwidth of H(f). For bandpass H{f), H(0) = 0. It follows from Eq. (4) that m, = 0 for
this case. :

Since the scene is spatially uniform, the average photon flux mg is independent of time.
It follows from Eqs. (3) - (5) that the mean m, and variance o ¥ are also independent of time,
justifying the claim of stationarity for the current Y(r),

Assuming that the transfer function H{f) is normalized as follows:
max H(f) =1, (6)

the noise bandwidth Afin Eq. (5) may be calculated from the equation:
I 2
af=§ 1HWP ar. N

Crossing Rates for Fixed Threshold Detection

It is now assumed that the signal processor of Fig. 1 is implemented such that the thres-
hold y, is equal to a constant. The fixed threshold y, is depicted on the sample function plots
of Fig. 3. A brief outline will now be given of a method for calculating the average number of
times m; that the random process Y (r} crosses the threshold during a time interval of duration
T seconds. (The relationship between the mean number of crossings m; and the usual search
set performance parameters P, and FAR is discussed in Appendix C.)

The expected number of threshold crossings m,;(0,T) during the time interval |/| < 7/2
may be written in terms of a "crossing rate" m; as:

m(0,T) = m; T (8)
According to Rice [16], #; may be calculated as
my = 1y, exp (—u?/2), {9)
where
; - 1/2
— 2 2
w = Nag Jo PO (10)
7
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with Af given by Eq. (7). Also,
u = (y,—mylio,, {tt)
with my and o, given by Egs. {4} and (5).

The quantity « defined by Eq. {11) may be thought of as a normalized threskold level.

It follows fram Eq. (9} that the expected number of threshoid crossings drops off rapidiy
as the theshold level is increased.

Finatly, it should be noted that the uniform-background threshold crossing formalism
described above cannot be used to calculate the expected number of threshold crossings associ-
ated with a target’s presence in the scene*, because a target’s presence would render the scene
non-uniform.

Non-Uniform Scenes

Current Statistics

It is now assumed that the sensor of Fig. | is scanned a number of times over the same
non-uniform scene, and that there are no changes in either the scene or the sensor from one
scan to the next. A number of sample functions of the resulting current process Y{r) are dep-
icted in Fig. 4.

Once again, the ensemble average mean and variance of Y{s) are defined by Egs. €1} and
{2). However, as discussed next, ¥{r) is now a non-stationary process, i.e., my, and o} are
functions of time.

As an illustration of how such non-stationary processes arise, it is now assumed that the
infrared scene encompasses regions of blue sky and clouds where

moltps}= average photon flux incident on the detector when blue sky is being observed,
and

mo(1.} = average photon flux incident on the detector when cloud is being observed.

The photon flux my in Eq. (3) is seen to be a function of time: my{1) takes on the valuye
mq(te) at a time /- when a cloud is in the field of view, and it takes on a different value
mo{rgs) at a time g when the scanning ficid of view includes only blue sky. Thus, the process

¥{:} is non-stationaty when the scene is non-uniform, because the mean and variance of ¥}
are seen from Bgs. {3)-(5) to be functions of time¥.

- .

As diseussed in Appendix C, the incremental number of threshold crossings asseciated wilh o lurgel’s presence (n Lhe
scene provides an estimate of the conventional scurch set purameter Py, By definition, Pp i the probubility of turget
detection.

?For the present, it suffices (o say thal the torms of Egs. (4 und {5} indicate that a time-varying My TTUSE gie Tise tor
tme varying sy and oy, However, it should be noted that Egs. (4] and (5} are anly strictly vadid for stationary
processes, pe., for time-invariant mry. Generabizations of Egs. {4) and (5) valid for both stationary and non-stalionery
processes are given by Bgs. {B-30) und {B-31).
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vt mytl_

Fig. 4 — Three sample functions of the ran-
dom current ¥ (s} are shown as funclions of
time. This figure is similar 1o Fig. 3, except
the sensor is now presumably scanned over yit:2)
a non-uniform scene. The {ime-varying
ensemble average my (1) of ¥{¢) is shown as
a dashed curve superposed on each of the
three depicted sample functions (solid
curves). The ensemble average my is still
defined by Eg. (1); however, the Ffact that
m, is now a function of time implies that
¥{(r) is now a nonstationary random pro- —

cess.
yit;3) /4

The time-varying mean value m (1) is superposed as a dashed curve on each of the sam-
ple functions y(r) depicted in Fig. 4.

Crossing Rates for Fixed Threshold Detection

The performance of a fixed threshold signal processor (cf, Fig. 1) against a non-uniform
scene can be characterized in terms of the quantity m,, where*
m, 0.7 =EU)= [, s Da, (12)
where T, is the time interval |1| < T/2, Jis an integer random variable equal to the number of -
times that the current Y (r) crosses the threshold level y, during the time interval T,, and E{}
is the statistical expectation operator as defined in Eqs. (1) and (2). Equation (12) is a straight-
forward generalization of Eq. (8) to allow for the possibility of time-variable threshold crossing
rates .,

As long as the time variation of my(r} is slow compared to the time variation of the
impulse response /(1) of the post-detector filter (cf. Fig. 1), a good estimate for #1,(s) can be
obtained from Eq. (9).

- . . ~ . . .~ "
Cf. Appendix C lor a discussion of Lhe relationship of i, (2, T) (o the usual IRST performance parameters £ und
FAR.
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The following steps are thea folfowed in calculating {0, T):

a. The time-varying mean current my{f) is derived from the time-varying photon irradi-
ance mg{1) by means of Eq. (3). (A detailed formulation for m{s} in terms of the back-
ground radiance distribution is provided in Appendix A.)

b. Estimates of m,{1} and ¢ }{¢} are obtained from Egs. (4} and (5}, {More rigorously,
Egs. (B-30) and (B-31) may be used to obtain m,{r) and o ${1}.}

¢. Equation {11) is evaluated for the time-varying normalized threshold v {f).
d. Eguation {9) is evaluated for the time-varying threshold crossing rate m,(1) |
e. Equation {12) is evaluated for the expected number of threshold crossings m {0, 7} .

Numerical examples following the above prescription typically show that the crossing rate
function () is extremely sharply peaked {(cf. Fig. 5}. Consequently, appreciable contribu-
tions to #,{0,T) only accrue in the near neighborhood of points such as ¢, in Fig. 5. It is
shown in Ref. 17 that the time ¢, in Fig. 5b is a saddle point of the crossing rate integral Eq.
{12}, and that Eq. (12} may be approximated asymptotically as:

my0, T) = m,{1,) 81, (13)

with mi, (s} obtained from Eq. (9). The quantity 81, is the effective interval of time during
which m (¢} remains in the near neighberhood of its peak value, {rom the standpoint of cross-
ing rate calculations. An expression for 8¢, is derived in Ref. 17.

The implications of Eq. (13) for system performance are illustrated with the aid of Fig. 6.

Fig. 5 — Part a) is an Hustrative plot of myler vs g
where my is the mean value of the filtered current
Y. Also shown is a constani threshiolt current
V. Wing above the peak walue ol my. The function
4 my (1) takes on its peak value at the time +,.

Part (b} iy 4 piot of the threshold croxsing rate

t my (e} corresponding to the threshold v, and mean

. current e} of part fay. The entire contribution

to the crossing rate inlegrat, Bq. {12), acerues in the
very near neighborhood of 7,.

(b}

10




